
BG/L Optimization Tips

Andrew Siegel
Argonne National Laboratory

Practical Optimization Steps
• Start with those that require no code modification

– Compiler switches
– Virtual-node vs. Co-processor mode
– Using optimized libraries (DGEMM, MASSV, etc.)
– Parallel opts

• MPI_EAGER_LIMIT
• Explicit mapping
• Etc

• Use directives within code
– Alignment assertions
– Aliasing assertions
– Loop unrolling suggestions
– Vectorization suggestions

Practical Optimization Steps

• Hierarchy of direct code modifications
– appropriate if performance bottlenecks are highly

concentrated
– Rearranging memory

• Cache reuse
• Contiguous pairs of doubles allow for quad-word loads

– Use double-hummer intrinsics
• Register/instruction schedule still done by compiler

– Hand-Coding assembler

BG/L Compute Chip

PPC440 Characteristics

• 32-bit architecture at 700 MHz
• single integer unit
• single load/store unit
• special double floating-point unit (double

hummer)
• Floating-point pipeline : 5 cycles
• Floating-point load-to-use latency : 4 cycles

Double FPU

• Double FPU has 32 primary floating-point
registers, 32 secondary floating-point
registers, and supports :
– standard PowerPC instructions, which execute

on fpu0 (lfd, fadd, fmadd, fadds, fdiv, …), and
– SIMD instructions for 64-bit floating-point

numbers (lfpdx, fpadd, fpmadd, fpre, …)

Compute Chip Characteristics

• L1 Data cache
– 32 KB total size, 32-Byte line size, 64-way associative,

round-robin replacement
• L2 Data cache

– prefetch buffer, holds 16 128-byte lines
• L3 Data cache

– 4 MB, ~35 cycles latency, on-chip
• Memory :

– 512 MB DDR at 350 MHz, ~85 cycles latency

Peak Flop/s
• 700 Hz * 2 flops/cycle * 2 fpus =

 2.8 GFlop/s theoretical peak per processor

• Assumes quite a few things:
– All FMA’s
– Perfect use of double hummer (more soon)
– Significant cache reuse (e.g. not streaming)
– Not load bound
– Can fill 5-stage pipeline
– etc.

• Caution: %-peak is only meaningful in comparison to something.
– 10% may be good, 1% may be good, 50% may be bad …

Memory bandwidth

• L1-cache: can complete 1 quadword load
per clock cycle: 16B*700/s = 11.2GB/s

• Out of L1-cache: Depends on complex
three-level memory hierarchy. Theoretical
max = 3.7GB/s

Memory bandwidth and latency using different components

IBM XL Compiler optimizations
• General optimization levels:

– Default optimization = none (very slow)
– -O : good place to start, use with -qmaxmem=64000
– -O2: same as -O
– -O3 -qstrict : can try more aggressive optimization, but must

strictly obey program semantics
– -O3: aggressive, allows re-association, will replace division by

multiplication with the inverse
– -qhot : turns on high-order transformation module will add vector

routines, unless -qhot=novector
– -qreport=hotlist to see vectorization report
– -qipa : inter-procedure analysis. May cause very slow compilation.

Compiler opts, cont.
• Architecture flags:

– -qalign=… (fortran only)
– -qarch=440 : generates standard powerpc instructions
– -qarch=440d : will try to generate double FPU code

• Suggested steps On BG/L
– -O -qarch=440 -qmaxmem=64000
– -O3 -qarch=440/440d
– -O4 -qarch=440d -qtune=440 (or -O5 …)
– -O4 = -O3 -qhot -qipa=level=1 -qarch=auto
– -O5 = -O3 -qhot –qipa=level=2 -qarch=auto

• Use –v flag or check .lst file to see all flags used in compilation

Compiler Listing

• -qsource –qlist
– Creates .lst file containing assembler listing
– Highly recommended when trying to squeeze

performance out of numerical kernel
– Try different compiler flags and study code

that is generated to understand performance

Runtime mode

• Virtual-node mode
– Each processor on a node runs as its own MPI task and

gets ½ total RAM (256MB each).
– Use cqsub -m vn

• Co-processor mode
– One CPU is used for message passing and the other for

computation.
– Compute processor gets full 512Mb RAM
– Use cqsub –m co

Optimized libraries

• ESSL BG/L port recently completed
– Not much feedback yet.

• No plans for PESSL port

• Vanilla version of ESSL routines (BLAS,
LAPACK, FFTW, etc.) perform poorly.

• See cheatsheet for full details/examples

MPI Mapping
• With virtual node mode, experiment with

– BGLMPI_MAPPING=TXYZ
– This puts tasks 0 and 1 on the first node, tasks 2 and 3

on the next node, with nodes in x,y,z torus order.
– The default layout is XYZT, which is often less

efficient than TXYZ.
– Also note that in TXYZ mode, you get two tasks per

node if you have #tasks < 2*#nodes; otherwise the
XYZT layout will leave just one task on at least some
nodes.

– Can also write a mapfile to explicitly control processor
mapping

EAGER_LIMIT
• BG/L can route messages either statically or dynamically

• By default small messages (those smaller than
MPI_EAGER) are routed statically, and large ones are
routed dynamically

• These can be controlled with the following environment
variables (see cheatsheet)
– BGLMPI_EAGER = 1000 (default is 10000)

• Sets limiting message size in bytes for eager protocol
– BGLMPI_AE = 1

• To try adaptive route for eager message. Default is static.

Compiler assertions
• Three compiler assertions are particularly important for

generating optimal code
– Alignment

• call alignx(16,x(1)) Fortran
• __alignx(16,x) C

– Inform compiler that variable x is aligned on a 16-byte boundary.
– Aliasing

• #pragma disjoint(*a,*b) C only
– Inform compiler that a and b will not refer to overlapping memory

– Unrolling
• !ibm* unroll(n) Fortran
• #pragma unroll(n) C

– Unroll inner loop that follows n elements

Example with DAXPY
• Fortran
call alignx(16,x(1))
call alignx(16,y(1))
!ibm* unroll(10)
do i = 1, n
 y(i) = a*x(i) + y(i)
end do
• C
double * x, * y;
#pragma disjoint (*x, *y)
__alignx(16,x);
__alignx(16,y);
#pragma unroll(10)
for (i=0; i<n; i++) y[i] = a*x[i] + y[i];

Double-hummer examples

• See ~siegela/examples/
– mxm

• In-cache matrix-matrix products using double-
hummer intrinsics

– dotp
• dot product using double-hummer intrinsics and

ensuring alignment

– ax+b

Listing file

• Use –qsource –qlist to generate friendly
assembler listing

• Good strategy is to tweak source, compiler
options and diagnose with .lst output, rather
than hand-coding assembler.

Performance Tools
• Currently installed performance tools

– gprof for per-routine timings
– memmon for detecting high-water memory mark
– mpitrace for automatically timing mpi calls
– hpmlib preliminary port
– papi preliminary port
– tau for more integrated and complex analysis

• Requires PAPI or hpmlib for hardware counters

• See cheatsheet for examples of how to use

